Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reactionAbstract Developing stable and efficient electrocatalysts is vital for boosting oxygen evolution reaction (OER) rates in sustainable hydrogen production. High-entropy oxides (HEOs) consist of five or more metal cations, providing opportunities to tune their catalytic properties toward high OER efficiency. This work combines theoretical and experimental studies to scrutinize the OER activity and stability for spinel-type HEOs. Density functional theory confirms that randomly mixed metal sites show thermodynamic stability, with intermediate adsorption energies displaying wider distributions due to mixing-induced equatorial strain in active metal-oxygen bonds. The rapid sol-flame method is employed to synthesize HEO, comprising five 3d-transition metal cations, which exhibits superior OER activity and durability under alkaline conditions, outperforming lower-entropy oxides, even with partial surface oxidations. The study highlights that the enhanced activity of HEO is primarily attributed to the mixing of multiple elements, leading to strain effects near the active site, as well as surface composition and coverage.more » « less
- 
            Abstract The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.more » « less
- 
            Abstract Hierarchical heterostructures of two-dimensional (2D) nanomaterials are versatile platforms for nanoscale optoelectronics. Further coupling of these 2D materials with plasmonic nanostructures, especially in non-close-packed morphologies, imparts new metastructural properties such as increased photosensitivity as well as spectral selectivity and range. However, the integration of plasmonic nanoparticles with 2D materials has largely been limited to lithographic patterning and/or undefined deposition of metallic structures. Here we show that colloidally synthesized zero-dimensional (0D) gold nanoparticles of various sizes can be deterministically self-assembled in highly-ordered, anisotropic, non-close-packed, multi-scale morphologies with templates designed from instability-driven, deformed 2D nanomaterials. The anisotropic plasmonic coupling of the particle arrays exhibits emergent polarization-dependent absorbance in the visible to near-IR regions. Additionally, controllable metasurface arrays of nanoparticles by functionalization with varying polymer brushes modulate the plasmonic coupling between polarization dependent and independent assemblies. This self-assembly method shows potential for bottom-up nanomanufacturing of diverse optoelectronic components and can potentially be adapted to a wide array of nanoscale 0D, 1D, and 2D materials.more » « less
- 
            Abstract The emergence of two-dimensional (2D) materials as functional surfaces for sensing, electronics, mechanics, and other myriad applications underscores the importance of understanding 2D material–liquid interactions. The thinness and environmental sensitivity of 2D materials induce novel surface forces that drive liquid interactions. This complexity makes fundamental 2D material–liquid interactions variable. In this review, we discuss the (1) wettability, (2) electrical double layer (EDL) structure, and (3) frictional interactions originating from 2D material–liquid interactions. While many 2D materials are inherently hydrophilic, their wettability is perturbed by their substrate and contaminants, which can shift the contact angle. This modulation of the wetting behavior enables templating, filtration, and actuation. Similarly, the inherent EDL at 2D material–liquid interfaces is easily perturbed. This EDL modulation partially explains the wettability modulation and enables distinctive electrofluidic systems, including supercapacitors, energy harvesters, microfluidic sensors, and nanojunction gating devices. Furthermore, nanoconfinement of liquid molecules at 2D material surfaces arising from a perturbed liquid structure results in distinctive hydrofrictional behavior, influencing the use of 2D materials in microchannels. We expect 2D material–liquid interactions to inform future fields of study, including modulation of the chemical reactivity of 2D materials via tuning 2D material–liquid interactions. Overall, 2D material–liquid interactions are a rich area for research that enables the unique tuning of surface properties, electrical and mechanical interactions, and chemistry.more » « less
- 
            Abstract Graphene, owing to its inherent chemical inertness, biocompatibility, and mechanical flexibility, has great potential in guiding cell behaviors such as adhesion and differentiation. However, due to the two-dimensional (2D) nature of graphene, the microfabrication of graphene into micro/nanoscale patterns has been widely adopted for guiding cellular assembly. In this study, we report crumpled graphene, i.e., monolithically defined graphene with a nanoscale wavy surface texture, as a tissue engineering platform that can efficiently promote aligned C2C12 mouse myoblast cell differentiation. We imparted out-of-plane, nanoscale crumpled morphologies to flat graphene via compressive strain-induced deformation. When C2C12 mouse myoblast cells were seeded on the uniaxially crumpled graphene, not only were the alignment and elongation promoted at a single-cell level but also the differentiation and maturation of myotubes were enhanced compared to that on flat graphene. These results demonstrate the utility of the crumpled graphene platform for tissue engineering and regenerative medicine for skeletal muscle tissues.more » « less
- 
            Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
